Molecular determinants of bacterial adhesion monitored by atomic force microscopy.
نویسندگان
چکیده
Bacterial adhesion and the subsequent formation of biofilm are major concerns in biotechnology and medicine. The initial step in bacterial adhesion is the interaction of cells with a surface, a process governed by long-range forces, primarily van der Waals and electrostatic interactions. The precise manner in which the force of interaction is affected by cell surface components and by the physiochemical properties of materials is not well understood. Here, we show that atomic force microscopy can be used to analyze the initial events in bacterial adhesion with unprecedented resolution. Interactions between the cantilever tip and confluent monolayers of isogenic strains of Escherichia coli mutants exhibiting subtle differences in cell surface composition were measured. It was shown that the adhesion force is affected by the length of core lipopolysaccharide molecules on the E. coli cell surface and by the production of the capsular polysaccharide, colanic acid. Furthermore, by modifying the atomic force microscope tip we developed a method for determining whether bacteria are attracted or repelled by virtually any biomaterial of interest. This information will be critical for the design of materials that are resistant to bacterial adhesion.
منابع مشابه
Effects of Plasma Proteins on Staphylococcus epidermidis RP62A Adhesion and Interaction with Platelets on Polyurethane Biomaterial Surfaces
Plasma proteins influence the initial adhesion of bacteria to biomaterials as well as interactions between bacteria and blood platelets on blood-contacting medical devices. In this paper, we study the effects of three human plasma proteins, albumin, fibrinogen (Fg), and fibronectin (Fn), on the adhesion of Staphylococcus epidemidis RP62A to polyurethane biomaterial surfaces, and also address ho...
متن کاملAdhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy.
Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the functi...
متن کاملBacterial adhesion force quantification by fluidic force microscopy.
Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physio...
متن کاملRole of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli.
Cranberry juice has long been believed to benefit the prevention and treatment of urinary tract infections (UTIs). As the first step in the development of infection, bacterial adhesion is of great research interest, yet few studies have addressed molecular level adhesion in this context. P-fimbriated Escherichia coli play a major role in the development of a serious type of UTI, acute pyeloneph...
متن کاملCombined AFM/Raman microspectroscopy for characterization of living cells in near physiological conditions
Raman microspectrosopy (RM) is a noninvasive, label-free, molecular spectroscopy method used to record the vibrational spectroscopic fingerprints based on molecular bonds and has been recently applied to characterize living cells. Atomic force microscopy (AFM) is a high-resolution form of scanning probe microscopy that can provide information including surface topography, cell adhesion, and cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 19 شماره
صفحات -
تاریخ انتشار 1998